

• Look at 2 recent papers:

- Curtis et al, 2019, The Spatial Distribution of Poverty and the Long Reach of the Industrial Makeup of Places: New Evidence on Spatial and Temporal Regimes. *Rural Sociology* 84(1):28-65
- Elson et al, 2020, Application of kernel smoothing to estimate the spatio-temporal variation in risk of STEC O157 in England. *Spatial and Spatio-temporal Epidemiology* 32:100305

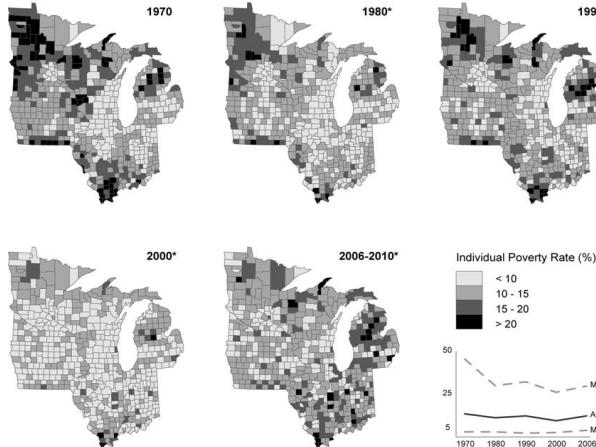
• What do I look at when I skim/read a paper?

- Goals/questions?
- What are the data?
- What methods were used?
 - Could be standard methods
 - Could be something new - if so, what's the new thing?, why needed?
- Can their methods be used for data/questions I care about?

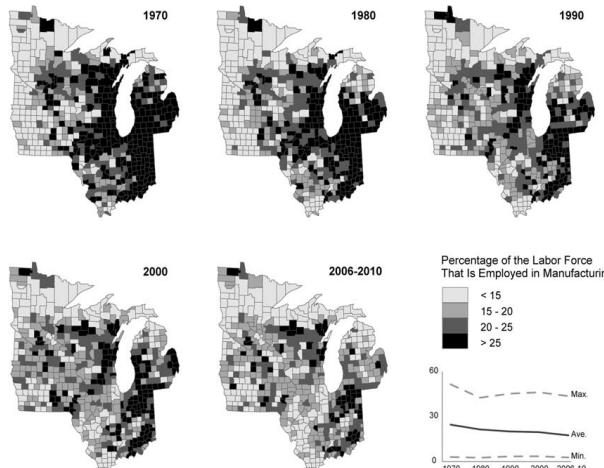
• Subject-matter scientist more likely to focus on the results

Curtis: Poverty and industry

- Looking at relationship between poverty and industrial environment
- Goal: how has this changed over time and over space?
- Two conceptual models (hypotheses):
 - regression slope more + over time
 - bigger increase in certain regions
- Data: Each county in 6 MidWestern states, 5 times: 1970, 80, 90, 2000, 2006-10
 - % pop below poverty threshold, logit transformed
 - % pop employed in manufacturing, service, and ag (sum < 100%)



*No county in the Upper Midwest reported an individual poverty rate above 30 percent.



- Model as published, with slight change of names:

$$Y_{st} = \mathbf{X}_{st}\boldsymbol{\beta}_t + t_t + \varepsilon_s + \gamma_{st}$$

- Two sorts of subscripts: s : spatial location, t : time period
- Easier to understand by building in pieces
- Analogy: designing a car
 - Don't start with a Ferrari
 - design a skateboard, then a go-kart, then a Model T, then ...
- Start simple, add complications as needed

The skateboard model

- Use linear regression to relate
 - Y_{st} : logit % poverty in county s and time t
 - X_{st} : % manufacturing in county s and time t
- $Y_{st} = \beta_0 + \beta_1 X_{st} + \gamma_{st}$
- Answer Q using β_1 : how strong is relationship?
- Issues with the skateboard:
 - One coefficient - don't know whether changed over time or space
 - Ignores correlation over time, over space, or combination

The go-kart model

- Allow the regression coefficients to vary over time

$$Y_{st} = \beta_{0t} + \beta_{1t} X_{st} + \gamma_{st} = \mathbf{X}_{st}\boldsymbol{\beta}_t + \gamma_{st}$$

- Possible because we have data across space for each time
- Easy to implement
 - Just requires setting up the appropriate X matrix

The Model-T model

- Include temporal and spatial correlations
- Raw data shows clear spatial correlation and some temporal correlation in Y_{st}
 - Better to evaluate with residuals
 - Pattern in Y_{st} may be a consequence of correlated X_{st} and indep errors
- From space-time material: 3 possible approaches
 - Metric: convert time lag to an equivalent spatial distance
 - Separable: one component for temporal correl., second for spatial
 - Joint model: every combination of (s, t) and (s^*, t^*)

The Model-T model

- They chose separable model: practical with such a large data set

- Temporal correlation: autoregressive, order 1 = AR(1)

$$t_t | t_{t-1} = \rho t_{t-1} + \tau_t$$

- Spatial correlation: CAR with 2nd order queen's neighbors

$$\varepsilon_i | \varepsilon_{-i} = \lambda \sum_{j=-i} C_{i,j} \varepsilon_j$$

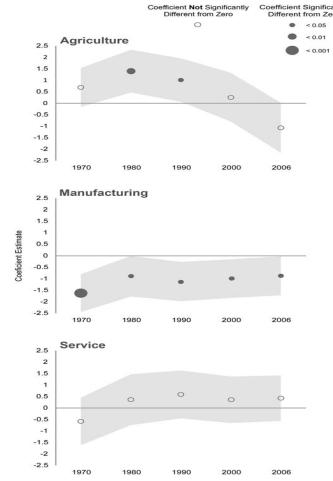
- Second order: neighbors and neighbors of neighbors
- Gives larger groups of "neighboring" counties

- Not easy to implement

- Usual ML is extremely slow: need to invert large Σ many times
- INLA: integrated nested Laplace approximations
- Much, much faster, especially for conditional correlations (AR(1) and CAR)
- Can't implement SAR models (at least now)

- This model answers Q1: does relationship change over time?

- Results shown by tables of coefficients and plots



The Ferrari model

- Allow coefficients to vary spatially as well as temporally

- Various ways to do this

- They use a "regime" approach:

- divide locations into spatial groups
- allow coefficients to vary between groups

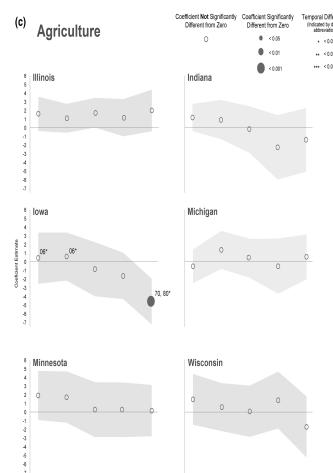
- Natural groups are states because may have different official policies

$$Y_{st} = \mathbf{X}_{st} \beta_{Rt} + t_t + \varepsilon_s + \gamma_{st}$$

- One subscript change in the model: β 's now depend on Region and time

- This model answers Q2: Do coefficient patterns over time vary spatially?

- Again, reported both by tables of coefficient values and plots



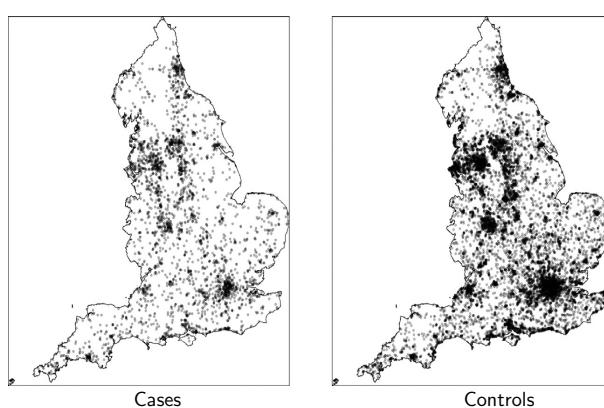
- New: Combination of ideas:
 - time- or space-time varying coefficients
 - with correlation in both space and time
- What else?
 - Here, coefficients for each time- or region-time-group are unrelated
 - What if they vary more smoothly?
 - e.g. 1970 coefficients closer to 1980's than others
 - Plots of coefficients support this idea
- Temporally / Spatially varying coefficient models
 - Allow coefficients to be correlated
 - By putting an AR(1) or CAR structure on the β 's

Elson: spatial risk of disease

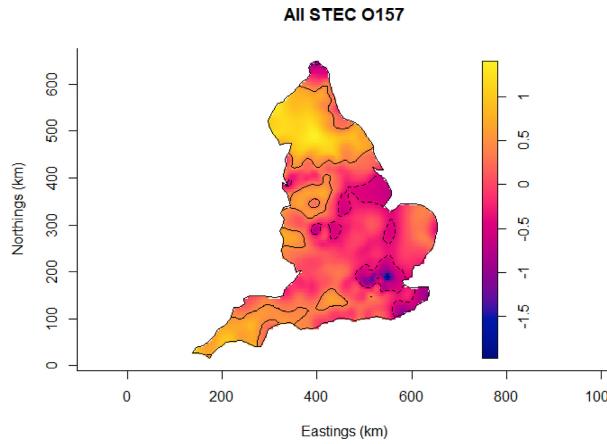
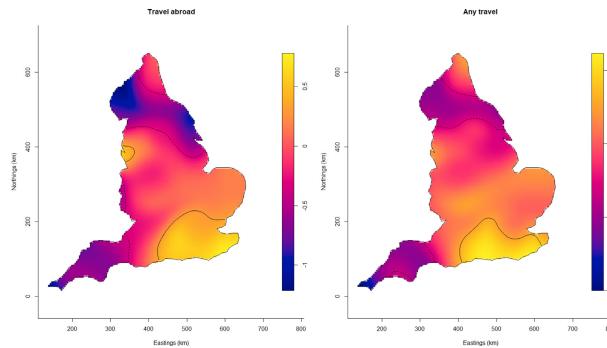
- Background:
 - STEC O-157: Shiga-toxin producing E. coli. In US, called E. coli O-157 H7.
 - Bacterial food contaminant, results in intestinal upset, may kill
 - Major cause of food recalls in US.
- Goals/questions:
 - Primary: Is infection rate constant across England?
 - If not, where are areas with higher/lower rates?
 - Secondary: Effect of Travel abroad / Travel?
 - Secondary: Differences between lineages
 - Secondary: Do patterns change over time?

Elson: data

- Cases: N = 3592
 - GI patient, tested for STEC O-157
 - If positive, collect additional information
 - Locations (UK post code \approx 15 houses) of all positive tests
 - 2009 - 2015
 - Can spread within households, only considered 1st infection.
 - Care about rate = # / population, not # cases
- Controls: N = 14,368
 - Random sample of individuals in England
 - 4 times as many controls as cases



- Look at intensity: IPP ideas
 - But don't have an image of population - only sample of locations
 - Apply kernel smoothing twice
- Estimate intensity of cases = $\lambda_{case}(s)$
- and relative intensity of controls = $\lambda_{control}(s)$
 - Have data on all confirmed cases
 - And a simple random sample of controls
- Interested in large scale pattern (not clustering / inhibition)
- Estimate $\log \lambda_{case}(s)/\lambda_{control}(s)$ on a grid across England
 - Control sampling fraction known: 14,368 / 52,640,000
 - so could estimate rate per person = $\log \lambda_{case}(s)/\lambda_{population}(s)$
 - Instead, scale relative to overall case/control ratio (4)
 - So $\log RR = 0 \Rightarrow$ at overall average rate
 - $\log RR = 1 \Rightarrow$ cases 2 are .72 times as likely
- Detail to care about: better to use same bandwidth for both smooths
- Randomization to assess whether unusually different from uniformity



- Estimate spatial pattern of rate for each month
- Combine information spatially and temporally
- Two bandwidths: one for space and one for time
- Use animation to visualize changes over time

- Extension to what we've seen in class
- But methods and software available
 - `relrisk()` in `spatstat`
 - Kelsall, J.E., Diggle, P.J., 1995. Non-parametric estimation of spatial variation in relative risk. *Stat. Med.* 14: 2335–2342
- Are there other approaches?
 - The controls started as polygons with population
 - Could think about IPP model with $X = \log \text{population}$

$$\log \lambda(s) = \beta_0 + \beta_1 \log \text{population}(s)$$

- Or force $\beta_1 = 1$
- β_0 is then the average $\log RR$
- Really want $\beta_0(s)$